DOC文库 - 千万精品文档,你想要的都能搜到,下载即用。

第4章 逻辑代数及逻辑门电路.doc

babe 宝贝12 页 8.401 MB下载文档
第4章 逻辑代数及逻辑门电路.doc第4章 逻辑代数及逻辑门电路.doc第4章 逻辑代数及逻辑门电路.doc第4章 逻辑代数及逻辑门电路.doc第4章 逻辑代数及逻辑门电路.doc第4章 逻辑代数及逻辑门电路.doc
当前文档共12页 2.88
下载后继续阅读

第4章 逻辑代数及逻辑门电路.doc

甘肃工业职业技术学院 教 序 案 授课 计划 4 号 8 课时 班级 课 第四章 逻辑代数及逻辑门电路 题 教学目的 及 教学要求 1、理解数字电路、数字信号的基本概念 2、了解分立元件门电路的基本组成原理 3、掌握集成门电路的种类、特性、基本原理及其应用 4、熟练掌握数制、编码、逻辑代数的公式、定理、规则及公式变换 5、掌握 TTL/CMOS 门电路应用技术 本章重点: 1、数制、编码与数制转换 2、门电路的逻辑符号、逻辑功能和表示方法 重点 3、逻辑代数的基本运算、公式和定理 和 4、逻辑函数的表示与化简 本章难点: 难点 1、逻辑函数的表示方法及相互关系 2、逻辑代数的公式、定理及化简方法; 1、模拟电子技术(第二版) 参考资料 教 材 胡宴如主编 高等教育出版社 2004.2 2、数字电路技术 杨志忠主编 高等教育出版社 2000.4 3、电子技术基础 康华光等编 高等教育出版社 1995.8 4、电工电子技术 林平勇编 高等教育出版社 2000.4 教材:《电子电路与电子器件》(第二版) 郭培源主编 高等教育出 版社 2004.2. 一、教学内容 1 4.1 数字电路的特点 4.2 数制和码制 4.3 逻辑代数基础 4.4 逻辑门电路 二、内容提要 本章主要介绍数字电路的特点、数制、编码与数制转换;逻辑代数基础知识及基本逻辑门电路 和集成门电路;逻辑代数的基本概念、公式、定理、逻辑函数的表示方法及函数化简。逻辑代数是 分析逻辑电路的数学工具, 三、教学过程(教案) 第四章 逻辑代数及逻辑门电路 4.1 数字电路的基础 4.1.1 模拟信号与数字信号 1.模拟信号:在时间和数值上都是连续变化的信号。 模拟电路:凡用来生产、加工和处理模拟电信号的电子电路称为模拟电路。 2.数字信号:在时间上、幅值上都是离散的、不连续的信号。 数字电路:凡用来生产、加工和处理数字电信号的电子电路称为模拟电路。 4.1.2 数字电路的特点 1.数字电路可以进行算术运算, ,此时它大多采用二进制,只需处理 0、1 两个数符;数字电路 也可进行逻辑运算与判断,此时它大多处理“二值逻辑”问题,例如“真”和“假”,“是”与 “非” , “有”与“无”等。 2.数字电路重点研究输入信号和输出信号之间的逻辑关系,它的数学分析工具是逻辑代数,描 述电路逻辑功能的主要方法是逻辑变量的真值表、逻辑函数式,卡诺图、特性方程、状态转换表、 时序图、逻辑电路图等。 4.2 数制与码制 4.2.1 常用计数制及其相互转换 1.十进位计数制 简称十进制,它的特点是 (1)有 10 个不同的数字符号: 0、 1、 2、 …、 9,基数为 10。 (2)按“逢十进一”的原则计数,即 9+1=(10)10。 (3)位权为 10i,基数的 i 次幂叫做第 i 位的位权。 任何一个十进制数度可以写成: 其中, n1 n2 0 N个数字中的任意一个,  dn1 10  dn2 10  ... d0 10  n 是小数点左边的位数, di 是 0~9 共 10 m 是小数点右边的位数, i 是数位的序数。例如, 345.21 可表示为 1 n1 d1 10  ... dm 10   di 10i m 345.21=3×102+4×101+5×100+2×10-1+1×10-2 i  m 2 一般而言, 对于用 R 进制表示的数 N , 可以按权展开为 N  an1  Rn1  an2  Rn2  ... a0  R0  n1 a1  R1  ... am  Rm   ai  Ri i  m 式中, ai 是 0、1、 …、 (R-1)中的任一个, m、 n 是正整数, R 是基数。在 R 进制中, 每个数字所表示的值是该数字与它相应的权 Ri 的乘积, 计数原则是“逢 R 进一”。 2.二进位计数制 当 R=2 时, 称为二进位计数制, 简称二进制。在二进制数中, 只有两个不同数码: 0 和 1, 进位 规律为“逢二进一”。任何一个数 N, 可用二进制表示为 N  an1  2n1  an2  2n2  ... a0  20  n1 a1  21  ... am  2m   ai  2i i  m 例如, 二进制数 1011.01 可表示为 (1011.01)2=1×23+0×22+1×21+1×20+0×2-1+1×2-2 3.八进位计数制和十六进制计数制 当 R=8 时, 称为八进制。在八进制中, 有 0、1、2、…、7 共 8 个不同的数码, 采用“逢八进 一”的原则进行计数。如(503)8 可表示为 (503)8=5×82+0×81+3×80 当 R=16 时, 称为十六进制。在十六进制中, 有 0、1、2、…、 9、 A、B、C、D、E、F 共 16 个 不同的数码, 进位方法是“逢十六进一” 。 例如, (3A8.0D)16 可表示为 (3A8.0D)16=3×162+10×161+8×160+0×16-1+ 13×16-2 4、各种进制数间的相互转换 (1)二、 八、 十六进制转换成十进制 :按权展开法 (2)十进制数转换成二、八、十六进制数 任意十进制数 N 转换成 R 进制数, 需将整数部分和小数部分分开, 采用不同方法分别进行 转换, 然后用小数点将这两部分连接起来。 整数部分: 除基取余法。 分别用基数 R 不断地去除 N 的整数, 直到商为零为止, 每次所得的余数依次排列即为相应 进制的数码。最初得到的为最低有效数字, 最后得到的为最高有效数字。 3 小数部分: 乘基取整法。 分别用基数 R(R=2、8 或 16)不断地去乘 N 的小数, 直到积的小数部分为零(或直到所要求的 位数)为止, 每次乘得的整数依次排列即为相应进制的数码。 最初得到的为最高有效数字, 最后得 到的为最低有效数字。 4.2.2 二 - 十进制编码 所谓 BCD 码就是用四位二进制代码来表示一位十进制数码。由于四位二进制码有 0000, 0001,…,1111 等 16 种不同的组合状态,故可以选择其中任意 10 个状态以代表十进制中 0—9 的 10 个数码,其余 6 种组合是无效的。因此,按选取方式的不同,可以得到不同的二—十进制编码。 下面介绍 8421BCD 码、余 3BCD 码和 2421BCD 码。 1.8421BCD 码 这种编码是选用四位二进制码的前 10 个代码 0000—1001 来表示十进制的这 10 个数码。 2.余 3BCD 码 如果把 8421BCD 码每个加上(0011)2,就是余 3BCD 码。 3.2421BCD 码 其中 2421 BCD 码最便于构成简单的单向计数器。2421 BCD 码和余 3 码一样具有互补性质,对 减法运算特别有用,多用于数字化仪表中。 4.3 逻辑代数基础 4.3.1 逻辑代数中的三种基本逻辑运算及常见的复合逻辑运算 逻辑变量的基本逻辑运算只有三种:与运算、或运算、非运算。 1. 与运算 与运算的逻辑函数表达式为 为 F =A· =A·B 实现与逻辑关系的电路称为与门。 与运算:“有 0 出 0,全 1 出 1”。 2.或运算 或运算的逻辑函数表达式为 为 F = A + B 实现或逻辑关系的电路称为或门。 或运算:“有 1 出 1,全 0 出 0”。 3.非运算 非运算的逻辑函数表达式为 为 A 1 F F A 4 实现非逻辑关系的电路称为非门。 非运算:“0 的非为 1,1 的非为 0”。 4.复合逻辑运算 实际的逻辑问题都由三种基本逻辑运算的组合来实现。 常见的复合逻辑运算有与非、或非、与或非、异或、同或。 AA B B ⊕ ☉ 4.3.2 逻辑代数中的基本公式和定理 1.基本公式、定理: 2.三个基本法则 (1)代入法则:在任何一个逻辑等式中,如果将等式两边所有出现的某一变量的地方都代之以 同一逻辑函数,等式仍然成立。 (2)对偶法则:对于任何一个逻辑表达式,如果将其中所有的“· ”换成“+”,“+” 换成 “· ”;“0”换成“1”,“1”换成“0” ,那么所得的函数是原函数的对偶式。 (3)反演法则:对于任何一个逻辑表达式,如果将其中所有的“· ”换成“+”,“+” 换成 “· ”;“0”换成“1” ,“1”换成“0” ;反变量换成原变量,原变量换成反变量,那么所得的 函数是原函数的反函数。 4.3.3 逻辑函数及其表示方法 5 F 逻辑函数有 5 种表示形式:真值表、逻辑表达式、卡诺图、逻辑图和波形图。只要知道其中一 种表示形式,就可转换为其它几种表示形式。 1.真值表 真值表:是由变量的所有可能取值组合及其对应的函数值所构成的表格。 真值表列写方法:每一个变量均有 0、1 两种取值,n 个变量共有 2i 种不同的取值,将这 2i 种 不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得 到逻辑函数的真值表。 2.函 数表达式——由逻辑变量和“与”、“或”、“非”三种运 算符 所构成的表达式。 3.逻辑图— .逻辑图——逻辑图是由逻辑符号及它们之间的连线而 构成 的图形。 【例 1】列出下列函数的真值表: L  AB  AB 解:该函数有两个变量,有 4 种取值的可能组合,将他们 按顺序排列起来,即得真值表。 可用真值表表示。 【例 2】由“三人表决”函数的真值表可写出逻辑表达式: L  ABC  A BC  AB C  ABC 【例 3】写出如图所示逻辑图的函数表达式。 解:可由输入至输出逐步写出逻辑表达式: L  AB  BC  AC 4.波形图: 是由输入变量的所有可能取值组合的高、低电 平及其对应的输出函数值的高、低电平所构成的图形。 【例 4】 F  ABC  ABC  ABC  ABC 6 5.卡诺图 卡诺图:将逻辑函数真值表中的各行排列成矩阵形式,在矩阵的左方和上方按照格雷码的 顺序写上输入变量的取值,在矩阵的各个小方格内填入输入变量各组取值所对应的输出函数值,这 样构成的图形就是卡诺图。 二变量函数的卡诺图 卡诺图:异或函数 F  AB  AB  A  B 在变量 A、B 的取值分别为 10、01 所对应的小方格内填入 1,其余小方 格内填 入 0(也可以空着不填)。 三变量函数的卡诺图: F  ABC  ABC  ABC  ABC 在变量 A、B、C 的取值分别为 000、011、101、110 所对应的小方格内填入 1,便得到该函数的 卡诺图。 四变量函数的卡诺图 卡诺图: F  ABD  C D 4.3.4 逻辑函数的化简方法 【逻辑函数化简的意义】逻辑表达式越简单,实现它的电路越简单,电路工作越稳定可靠。 1.公式法 (1)并项法:运用公式, A  A  1 将两项合并为一项,消去一个变量。 (2)吸收法:运用吸收律 A+AB=A,消去多余的与项。 (3)消去法。 (4) 配项法。 2.卡诺图法 最小项:n 个变量的逻辑函数中,包含全部变量的乘积项称为最小项。n 变量逻辑函数的全部 最小项共有 2n 个。 任何一个逻辑函数表达式都可以转换为一组最小项和称为最小项表达式。 7 无关项:在有些逻辑函数中,输入变量的某些取值组合不会出现,或者一旦出现,逻辑值可以 无关项: 是任意的。这样的取值组合所对应的最小项 称为无关项、任意项或约束项。 化简具有无关项的逻辑函数时,要充分利用无关项可以当 0 也可以当 1 的特点,尽量扩大卡诺 圈,使逻辑函数更简。 卡诺图化简逻辑函数的过程: (1)2 个相邻的最小项结合,可以消去 1 个取值不同的变量而合并为 l 项。 (2)4 个相邻的最小项结合,可以消去 2 个取值不同的变量而合并为 l 项。 (3)8 个相邻的最小项结合,可以消去 3 个取值不同的变量而合并为 l 项。 卡诺图合并最小项的原则(画圈的原则) (1)尽量画大圈,但每个圈内只能含有 2n(n=0,1,2,3……)个相邻项。要特别注意对边相邻 性和四角相邻性。 (2)圈的个数尽量少。 (3)卡诺图中所有取值为 1 的方格均要被圈过,即不能漏下取值为 1 的最小项。 (4)在新画的包围圈中至少要含有 1 个末被圈过的 1 方格,否则该包围圈是多余的。 卡诺图化简逻辑函数的步骤: (1)画出逻辑函数的卡诺图。 (2)合并相邻的最小项,即根据前述原则画圈。 (3)写出化简后的表达式。每一个圈写一个最简与项,规则是,取值为 l 的变量用原变量表示, 取值为 0 的变量用反变量表示,将这些变量相与。然后将所有与项进行逻辑加,即得最简与—或表 达式。 【例 5】用卡诺图化简函数: F  C  AC D  ABD AB 解: 得 F  C  AB  BD 4.4 逻辑门电路 4.4.1 分立元件门电路 逻辑门电路:用以实现基本和常用逻辑运算的电子电路。简称门电路。 基本和常用门电路有与门、或门、非门(反相器)、与非门、或非门、与或非门和异或门等。 逻辑 0 和 1: 电子电路中用高、低电平来表示。 获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态。 1.二极管与门 当决定某事件的全部条件同时具备时,结果才会发生,这种因果关系叫做与逻辑。 8 与门表达式:F=A·B uA uB uF D1 D2 0V 0V 0V 导通 导通 0V 3V 0V 导通 截止 3V 0V 0V 截止 导通 3V 3V 3V 导通 导通 2.二极管或门 或门表达式:F=A+B 3. 三极管反相器(非门) uA uB uF D1 D2 0V 0V 0V 截止 截止 0V 3V 3V 截止 导通 3V 0V 3V 导通 截止 3V 3V 3V 导通 导通 非门函数表达式: F  A 4.4.2 TTL 集成门电路 9 1.TTL 与非门结构与原理 (1)输入全为高电平 3.6V 时: T2 、T3 导通,VB1=0.7 ×3=2.1(V ),由于 T3 饱和导通,输出电压为 V :O=VCES3≈0.3V 这时 T2 也饱和导通,故有 VC2=VE2+ VCE2=1V。使 T4 和二极管 D 都截止。 (2)输入有低电平 0.3V 时:该发射结导通,VB1=1V。所以 T2、T3 都截止。由于 T2 截止,流 过 RC2 的电流较小,可以忽略,所以 VB4 ≈VCC=5V ,使 T4 和 D 导通,则有: VO ≈VCC VBE4-VD=5-0.7-0.7=3.6(V) 。 综合上述两种情况,该电路满足与非的逻辑功能,即: L  A B C 2.TTL 门电路的传输特性 门电路的输出电压岁输入电压的变化关系。 3.TTL 门电路输入特性 【输入伏安特性】门电路输入电流与输入电压之间的关系。 【输入负载特性】TTL 输入端接较大的电阻为高电平(开门电阻) ,接较小的电阻(关门电阻)为 低电平。 4.TTL 门电路输出特性 门电路输出高电平带拉电流负载,输出低电平带灌电流负载。 拉电流负载不能使输出高电平下降到最低高电平; 灌电流负载不能使输出低电平上升到最高低电平。否则电路的逻辑功能就会出现错误。 5.TTL 门电路多余输入电的处理 TTL 输入端悬空为高电平,但电路易受到干扰。 TTL 多余输入端通过电阻(1~3K)接 Vcc 为高电平; TTL 多余输入端接地为低电平; 可与其它输入端并接。 6.集电极开路门(OC 门) OC 门为集电极开路门,这一系列门电路,可以使输出端并接形成线逻辑,并通过上拉电阻与电 源连接。 7.TTL 三态门 10 电路的输出有高阻态、高电平和低电平 3 种状态。 (1)E=0 时,输出端开路,电路处于高阻状态。 (2)E=1 时,电路输出与输入的逻辑关系和一般反相器相同 8.典型 TTL 集成门电路 74LS00 内含 4 个两输入端的与非门,电源线及地线公用。 74LS20 内含两个 4 输入端的与非门,电源线及地线公用。 74LS00 的引脚 74LS20 的引脚 4.4.3 CMOS 集成门电路 1.CMOS 非门 (1)uA=0V 时,VN 截止,VP 导通。输出电压 uF=VDD=10V。 (2)uA=10V 时,VN 导通,VP 截止。输出电压 uF=0V。 2.CMOS 门电路 F  A 用 CMOS 反相器可以组成 CMOS 与、或、非等系列门电路。CMOS 漏极开路门、电平转换器、 三态门、CMOS 传输门等。 3.CMOS 电路使用注意事项 注意静电保护,严防栅极击穿损坏 正确识别输入输出端,并正确连接 正确连接,注意开关机顺序 输入信号规范,输入保护电路加限流措施 11 与插接件线连的 CMOS 输入端,应设置 50~100K 的输入端下拉或上拉电阻。 四、本章小结 1.数字信号的数值相对于时间的变化过程是跳变的、间断性的。对数字信号进行传输、处理的 电子电路称为数字电路。数字电路研究的重点是电路输入和输出之间的逻辑关系。模拟信号通过模 数转换后变成数字信号,即可用数字电路进行传输、处理。 2.日常生活中使用十进制,但在计算机中基本上使用二进制,有时也使用八进制或 16 进制。 任意进制的数按基数和权展开为多项式即可转换为十进制数。将十进制整数转换为二进制数可采用 除 2 取余法。利用 1 位 16 进制数由 4 位二进制数构成,可以实现二进制数与 16 进制数之间的相互 转换。 二进制数码不仅可以表示数值,而且可以表示符号及文字。BCD 码是用 4 位二进制数码代表 1 位十进制数的编码。有多种 BCD 码形式,最常用的是 8421 码。 3.门电路是利用半导体器件的开关特性构成的,是数字电路中最基本的逻辑单元。与门、或门 和非门是 3 种基本逻辑门,能实现与、或、非 3 种基本逻辑关系。由 3 种基本逻辑门可以组成与非 门、或非门等其他门电路。由于集成电路具有工作可靠、便于微型化等优点,因此现在普遍使用的 是集成门电路。 4.逻辑代数是分析和设计数字电路的重要工具。利用逻辑代数,可以把实际逻辑问题抽象为逻 辑函数来描述,并且可以用逻辑运算的方法,解决逻辑电路的分析和设计问题。逻辑代数的公式和 定理是推演、变换及化简逻辑函数的依据。 逻辑函数可用真值表、逻辑表达式、逻辑图、波形图和卡诺图等方法表示。这些方法各 具特点,但本质相通,可以互相转换。对于一个具体的逻辑函数,究竟采用哪种表示方法应视实际 需要而定。在使用时应充分利用每一种表示方法的优点。 5.逻辑函数的化简有公式法和卡诺图法等。公式法是利用逻辑代数的公式、定理和规则来对逻 辑函数化简。公式法适用于各种复杂的逻辑函数,但需要熟练地运用分式和定理,且具有一定的运 算技巧。卡诺图法就是利用函数的卡诺图来对逻辑函数化简。卡诺图法简单直观,容易掌握,但变 量太多时卡诺图太复杂,卡诺图法已不适用。 6.集成门电路有 TTL 与 CMOS 两大系列,使用时除了要知道其逻辑功能,还要了解使用注意事 项。 五、作业:2、5、9、10、11、13、15、19、25、27、28、30 12

相关文章